aviso-oportuno.com.mx

Suscríbase por internet o llame al 5237-0800


 
La teoría bayesiana, otra forma de hacer estadística
07-mayo-2013
Ir a la portada del BlogComentarios: 3 Lecturas: 26458 Ir a los comentarios

 
 
Thomas Bayes (1701-1761).
Por José Andrés Christen Gracia (Cimat)*

En 1763 se publicó el artículo "An Essay Towards Solving a Problem in the Doctrine of Chances" (Un ensayo hacia la solución de problemas en la disciplina del azar) escrito por el reverendo Thomas Bayes (1701-1761). En dicho artículo, el matemático inglés ofreció una sencilla demostración de la teoría de la probabilidad cuyas consecuencias difícilmente podía prever. Aunque cayó en el olvido y fue marginado por muchos años, el Teorema de Bayes logró establecer los principios de la estadística bayesiana y resurgió después para resolver todo tipo de problemas, desde interpretar mensajes cifrados de la Segunda Guerra Mundial hasta decodificar el material genético.

Bayes ya había muerto cuando el ensayo fue enviado por Richard Price a la revista Philosophical Transactions, por lo que algunos estudiosos todavía debaten si Price tuvo alguna intervención más sustancial en el artículo.

El de Bayes es un teorema válido del "cálculo de probabilidades", lo que hoy llamamos "Teoría Matemática de la Probabilidad" (TMP). Este teorema también es conocido como Teorema de la Probabilidad Inversa, pues explica cómo obtener la probabilidad de un evento A dada la información B, calculándola al revés, esto es, estableciendo la probabilidad a priori del evento A y la probabilidad de que hubiese ocurrido el evento B dado el evento A.

Con las herramientas y la elaboración de la TMP actuales, el teorema de Bayes es muy sencillo de probar. De hecho, Bayes demostró una versión particular que después se generalizó a muchos otros casos. En términos de la TMP, la historia del Teorema de Bayes básicamente termina ahí, en un teorema sencillo. Pero, como es de uso común en la TMP hasta nuestros días, Bayes también quiso "interpretar" el teorema, es decir, explicarlo en términos de una posible interpretación de la teoría.

Pongamos un ejemplo: ¿Cuál es la probabilidad P de que mañana llueva en Guanajuato? La "lluvia de mañana miércoles en Guanajuato" es el evento A. Lo que sabemos del mismo, la información que obtengamos, como los datos meteorológicos actuales y anteriores (del pasado inmediato y mediato), la humedad, el clima regional, etcétera, se representan con B. La propuesta de Bayes es calcular cuál es la probabilidad de que llueva mañana dada la información de B. Eso es hacer estadística: tenemos unos datos y, dado que tenemos esa información, queremos calcular la probabilidad de algún evento. Con esto, Bayes fundó una manera de hacer estadística que ahora llamamos estadística bayesiana.

Supongamos que los meteorólogos le asignan al evento A una probabilidad de 10%. Pero, ¿qué quiere decir eso? En otras áreas de estadística, en la frecuentista, eso se interpreta en términos de muestras repetidas. Se dice: "si tomas muchas muestras del evento A, el porcentaje tal de los casos caerá en tal o cual intervalo". Pero en este problema, el de la lluvia, no podemos tomar la muestra porque sólo hay un "mañana miércoles" único e irrepetible. Únicamente de ciertos aspectos podemos tomar datos y pensar que podemos repetir una muestra. El argumento frecuentista se aplica en esos casos, pero en éste, ¿qué quiere decir que la probabilidad de que llueva mañana es de 10%?

La teoría bayesiana establece que ese número (la probabilidad) no representa una frecuencia, sino que es una medida de lo que conocemos nosotros, una magnitud de nuestra incertidumbre o de nuestra certeza. Si al evento "llueve mañana miércoles en la ciudad de Guanajuato" le asignamos una probabilidad de 10%, dados los datos que tenemos, esto significa que "nosotros" tenemos alguna certeza de que no va a llover mañana, que es poco probable.

Entonces, lo que mide la estadística bayesiana es la certidumbre y la incertidumbre, la seguridad de quien está esperando el evento.


Pie de página: Introducción del artículo "An Essay Towards Solving a Problem in the Doctrine of Chances"

Esto significa también que la probabilidad es una opinión que se puede volver una apuesta. Es una opinión de un "agente" que puede ser una persona o, en nuestro ejemplo, el Sistema Meteorológico Nacional. Esto es, la probabilidad se refiere a un agente acerca de un evento, lo que el mismo sabe en torno del evento. Y que podría volverse una apuesta, en el sentido que puedo apostar nueve a uno que no va a llover en la ciudad de Guanajuato mañana.

La teoría bayesiana se desarrolló posteriormente en el siglo XX cuando sus principios fueron axiomatizados en los trabajos de De Finetti, Ramsey y Savage, y también cuando encontraron fundamento filosófico en la epistemología moderna. La idea fundamental, sugerida por Keynes, es interpretar la probabilidad como un "grado de conocimiento", no como una frecuencia. Esto fue formalizado al identificar los grados de incertidumbre como un sistema de apuestas, justo para un "agente" que establece la probabilidad a priori de A, las condiciones B dado que ocurre el evento A, y, finalmente, calcula la probabilidad P de que ocurra el evento A dada la información B.

A 250 años de su publicación, el Teorema de Bayes demuestra cómo una idea simple, pero auténtica y fundamentalmente diferente, puede ser seminal y cimentar el desarrollo de toda una disciplina y escuela de pensamiento, como lo es la estadística bayesiana moderna. Sin duda el ensayo de Bayes es uno de los artículos fundamentales de la estadística y un evento a celebrar en 2013, el Año Internacional de la Estadística.

De su interés:
- International Society for Bayesian Analysis.
- El artículo original de Bayes: T. Bayes (1763), "An Essay towards solving a Problem in the Doctrine of Chances", Philosophical Transactions of the Royal Society of London 53, 370-418.
- Un libro del tema de interés general: Sharon Bertsch McGrayne. "The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy". Yale University Press, 2011.

* El Dr. José Andrés Christen Gracia es investigador titular C del Área de Probabilidad y Estadística en el Centro de Investigación en Matemáticas (Cimat), en Guanajuato, Gto. Informes y comentarios en este correo.

***

Notas del editor
Con esta entrega iniciamos el cuarto año de publicación ininterrumpida del blog Con-Ciencia.

Para más información de las actividades que desarrolla el Sistema de Centros Públicos de Investigación Conacyt, consulte las páginas México CyT y Gaceta CyT México; asimismo, le invitamos a escuchar la sección del blog "Con-Ciencia" en el programa "Radio 110 grados, El cuadrante científico", que se transmite cada lunes a las 14 horas (tiempo del centro).

El blog Con-Ciencia está en facebook y en twitter. ¡Síganos!

El Centro de Investigación en Matemáticas (Cimat) ha publicado también en el blog "Con-Ciencia" los siguientes artículos:

  • Barradas Bribiesca, José Ignacio (Cimat). Ser cuadrado no siempre es tan malo. 17 de enero de 2012.
  • Hernández Lamoneda, Luis (Cimat). ¿Cuánto vale Pi?. 15 de marzo de 2011.
  • Solís Lozano, Francisco Javier (Cimat). La matemática, una herramienta en la lucha contra el cáncer. 1 de febrero de 2011.
  • Rivera Meraz, Mariano J. J. (Cimat). Algoritmo para colorear imágenes o películas y la industria del entretenimiento. 19 de octubre de 2010.
  • Participa envía tus comentariosIr a la portada del Blog
    INSTRUCCIONES: Selecciona el texto deseado y dá click en el botón correspondiente para formatearlo. Para visualizar tu comentario click Aqui
    Imagen: * Nombre: * e-mail:

    * Campos obligatorios para llenar

    Acepto las políticas de privacidad
     


     

    Buen artículo, el Teorema de Probabilidad Inversa es una visión muy diferente a lo que estamos acostumbrados a ver; regularmente uno espera tener certeza de que un fenómeno se suscite con base en un dato, no de la seguridad que tiene el sujeto de que las cosas sucedan a partir de este mismo dato.

     Enviado por Fabiola Hernández - 05-junio-2013 a las 01:31 Enviar mail al autor

     

    Es un artículo bastante claro. Es curioso darse cuenta que existe un tipo de medición que tenga como principal objetivo el interés del sujeto, no el fenómeno en sí; regularmente uno se interesa por las posibilidades de que un hecho se suscite, no por el grado de seguridad en una respuesta (con base en un dato duro, claro está) del propio interesado.

     Enviado por Fabiola Hernández - 05-junio-2013 a las 01:20 Enviar mail al autor

     

    Muy buen artículo, espero que se le dé difusión. En México la estadística Bayesiana apenas está surgiendo (y luchando contra ciertos prejuicios), mientras que en el resto del mundo es muy aceptada y ampliamente utilizada. Esto ha limitado el posicionamiento del país en el mapa mundial de la estadística. Otro punto que, a mi parecer, ha limitado un estudio integral de la estadística en México es la pelea a muerte que tienen los estadísticos "Clásicos" y los "Bayesianos", dadas sus posturas radicales. Lo interesante de esto es que en otros países éstas diferencias (principalmente filosóficas) han pasado a segundo término y se pueden ver a ambos incluso colaborando. En parte porque han entendido que ningún enfoque es la Panacea y lo importante es el desarrollo.

     Enviado por Invitado - 08-mayo-2013 a las 04:02 Enviar mail al autor

     

    Buen artículo, el Teorema de Probabilidad Inversa es una visión muy diferente a lo que estamos acostumbrados a ver; regularmente uno espera tener certeza de que un fenómeno se suscite con base en un dato, no de la seguridad que tiene el sujeto de que las cosas sucedan a partir de este mismo dato.

     Enviado por Fabiola Hernández - 05-junio-2013 a las 01:31 Enviar mail al autor

     

    Es un artículo bastante claro. Es curioso darse cuenta que existe un tipo de medición que tenga como principal objetivo el interés del sujeto, no el fenómeno en sí; regularmente uno se interesa por las posibilidades de que un hecho se suscite, no por el grado de seguridad en una respuesta (con base en un dato duro, claro está) del propio interesado.

     Enviado por Fabiola Hernández - 05-junio-2013 a las 01:20 Enviar mail al autor

     

    Muy buen artículo, espero que se le dé difusión. En México la estadística Bayesiana apenas está surgiendo (y luchando contra ciertos prejuicios), mientras que en el resto del mundo es muy aceptada y ampliamente utilizada. Esto ha limitado el posicionamiento del país en el mapa mundial de la estadística. Otro punto que, a mi parecer, ha limitado un estudio integral de la estadística en México es la pelea a muerte que tienen los estadísticos "Clásicos" y los "Bayesianos", dadas sus posturas radicales. Lo interesante de esto es que en otros países éstas diferencias (principalmente filosóficas) han pasado a segundo término y se pueden ver a ambos incluso colaborando. En parte porque han entendido que ningún enfoque es la Panacea y lo importante es el desarrollo.

     Enviado por Invitado - 08-mayo-2013 a las 04:02 Enviar mail al autor

     
     
    Acerca del autor
     
    Sistema de Centros Públicos de Investigación Conacyt

    Este es un blog del Sistema de Centros Públicos de Investigación Conacyt que tiene el objetivo de dar información relevante de ciencias sociales, ciencias naturales y tecnología; el conocimiento científico y tecnológico creado busca contribuir a la solución de problemas de prioridad nacional que incremente la competividad del país e impulsar el bienestar de la sociedad mexicana. Se publicará cada martes.

    El Sistema de Centros Públicos de Investigación Conacyt es un conjunto de 27 instituciones distribuidas en todo el país, varias de las cuales tienen más de 30 años de historia, convirtiéndose en generadoras de conocimiento altamente especializado y competitivo a nivel nacional e internacional y es un referente para la toma de decisiones en materia de políticas públicas.

    Editor del blog: Miguel Acosta Valverde, twitter: @macosta5811

     
    Escribele  haz click!
     

    Entradas anteriores
     
    A propósito de la salud de la Tierra, en su día
     
    La propiedad intelectual como herramienta para generar innovación
     
    Reforestación de tierras erosionadas en el desierto: el papel de las bacterias promotoras de crecimiento en plantas y la materia orgánica
     
    Los laboratorios de Cidesi como soporte a la industria aeronáutica de México
     
    Hipertensión arterial: ¿Es lo que comemos o todo está en nuestros genes?
     
    El arte de hacer tuba: un legado filipino en el occidente de México
     
    La importancia del cráter de Chicxulub para el acuífero del norte de Yucatán
     
    Hongos comestibles y medicinales en Iberoamérica
     
    El embarazo no deseado, ¿por qué sigue ocurriendo?
     
    Invisibilidad en el CIO
     

    Calendario de búsqueda